
RecVis final project : Single view 3D object reconstruction

Lambert Fatoux
MVA - ENS Paris Saclay

lambert.fatoux@eleves.enpc.fr

Loı̈ck Chambon
MVA - ENS Paris Saclay

loick.chambon@eleves.enpc.fr

Abstract

This report presents methods and results to reconstruct a
3D mesh. It focuses on comparing methods grouped into two
categories: those that use implicit representations such as an
occupancy functions [7] or a signed distance functions [8]
and those that use an hybrid representation by solving for
example the Poisson equation [9]. We find out that these
approaches allow to learn complex shapes and yield similar
results on a specific class of the ShapeNet dataset.

1. Introduction

Dealing with shapes reconstruction leads to a shape mod-
elization issue. Traditional 3D representation such as voxels,
point clouds and meshes present a trade off between memory
requirements and accuracy. If some neural networks try to
refine their use with octrees [11] or poly-cube mapping [2],
they still suffer from discretization and fall into disuse.

Subsequently, other representations, known as implicit
representations, appeared. They aim to learn a function rep-
resenting a surface [10] and are defined as the isocontour S
of a volumetric scalar function on a isovalue ρ,

Sρ = {x ∈ R3|f(x) = ρ}

Deep neural networks try to approximate f by a function
parametrized by θ ∈ Rm. For instance, given a point p, they
can approximate a signed distance function SDF [8] by:

fθ : x ∈ R3 → SDF (x) ∈ R3

or an occupancy function o [7] using a conditional observa-
tion x :

fθ : (p;x) ∈ R3 ×X → o(x) ∈ [0, 1]

Furthermore, implicit representations have gained popularity
by their ability to be rendered directly from their volumetric
representation with a ray-casting approach, or converted to
triangle meshes for display before to be reconstructed using
Marching Cube [5]. Moreover, although inference with the
implicit representation is slower than with the explicit repre-
sentation, the meshes obtained are much better.

2. Networks
2.1. DeepSDF

Published in ”DeepSDF: Learning Continuous Signed
Distance Functions for Shape Representation” [8] by Jeong
Joon Park in 2019, DeepSDF is a simple auto-decoder taking
a point x ∈ R3 within a previously constructed point cloud,
that uses a severe sampling strategy on the edges of the mesh,
and a latent vector z ∈ R259 optimized during training. Dur-
ing inference, the learned parametrized function fθ returns for
each point x its signed distance function s. Then the surface
is reconstructed by calculating the isosurface associated with
a null isovalue.

The architecture is simply a composition of 8 fully-
connected layers with one skip connection of the spatial in-
formation from the input to the half of the model. All internal
layers are 512-dimensional and have ReLU non-linearities.
The output non-linearity regressing the SDF value is tanh.
The paper proposed to train their model by optimizing a
clamped loss parametrized by δ = 0.1 which allows to con-
trol the distance from the surface over which they expect to
maintain a metric SDF.

L(f(x; θ)) = |clamp(f(x; θ), δ)− clamp(s, δ)|

Our implementation is based and adapted from the official
repository 1.

2.2. Occupancy Network

The occupancy network works similarly but aims at pre-
dicting the occupancy function for a given input. The net-
work takes in entry the 3D points we are trying to classify
as well as a conditioning input, that can be an image, 3D
pointcloud or voxels. The training part is done by uniformly
sampling points pi ∈ R3 inside the bounding box (plus an
small padding) of an object as well as its occupancy value
oi = o(pi). The loss used in the paper is the cross entropy
classification loss:

L(fθ, oi) = −(oi log(fθ(pi, xi))+(1−oi) log(1−fθ(pi, xi)))

The neural network is a fully connected residual network ar-
chitecture made of 5 ResNet blocks, that outputs in the end the

1https://github.com/facebookresearch/DeepSDF.

1

occupancy probability. One important aspect is that the input
is conditioned using conditional batch normalization that al-
lows to have different types of encoder depending on the type
of input : image, voxels or pointcloud.
For the single view reconstruction, a ResNet18 [4] encoder
is used, for pointclouds the PointNet encoder is used and
VoxNet [6] is the choosen encoder for the voxel representa-
tion.

2.3. Shape As Points

Published in ”Shape As Points: A Differentiable Poisson
Solver” [8] by Peng et al. in 2021, Shape As Points takes a
noisy, unoriented point cloud {c} as input and outputs a 3D
shape using a differentiable Poisson solver.

The architecture is composed of three models. The first
one takes as input {c} and encodes it into a feature ϕ using a
convolutional point encoder proposed in [1]. The second one
is a MLP that takes as input (c, ϕ(c)) and predict the offset
∆c of the unoriented point cloud. Finally, the third model
is a MLP that predicts the normals of the point cloud using
information from c + ∆c. The two MLP comprises 5 layers
of ResNet blocks with a hidden dimension of 32 and they do
not share weights.

Since their network uses a Differentiable Poisson Solver,
the loss is at the core of the training. It is the mean squared er-
ror between the predicted and the ground truth indicator grid
χ that describes the solid geometry.

LDPSR = ||χ− χ̂||22
To optimize this loss, we have to derivate three terms. The

second term concerns the solution of the Poisson equation.
The last term directly involves the optimisation of the neural
network. Below po is an oriented point and puno is an unori-
ented point.

∂LDPSR

∂p
=

∂LDPSR

∂χ
.
∂χ

∂po
.
∂po
∂puno

Our implementation of the network relies on the official
one available on github. 2. And we have used, if not specified,
the default settings available in the ”configs/learning based”
folder of the official repository.

3. Experiments
Everything has been trained, validated and tested from

scratch. Our trained networks and some reconstructed
meshes are available at this link 3. Without any specifications,
we have used the hyper-parameters indicated in the papers.

3.1. Dataset

The dataset that has been used is an excerpt of the sofas
class of the Shapenet dataset [3]. Our dataset has been care-
fully split into 3 subsets for training, validation and testing,

2https://github.com/autonomousvision/shape as points
3https://drive.google.com/drive/folders/1qZ0kgDfGb0ejKAgr-

xaXHLruHJYlwFx8?usp=sharing

making sure that the testing datasets were the same for each
comparison that has been made. The training and the test-
ing splits are the same as the one available on the DeepSDF
repository. Since the validation dataset was not available, we
used our own split, taking the same amount of data as the split
of the test dataset.

In the end, around 1600 meshes were used for training, 410
for validation and 410 meshes were used to test and compare
the results of our models over several metrics that will get
discussed later.

3.2. Pre-processing

The three papers proposed three different ways of pre-
processing the data. About the occupancy and the Poisson
solver model, we did not change anything as the data were
already pre-processed. Concerning the SDF model, due to
compilation errors, we have not executed the code of the offi-
cial repository but we have used a repository that mimics the
complex sampling strategy 4.

To have a fair comparisons between our models, we have
sampled the same amount of points (about 100k) for the three
models even if the original paper suggests to sample 550k
points (250k points on the surface of the mesh perturbed by
two noise with variance 0.0025 and 0.00025, plus 50k points
sampled in the unit sphere). We have kept the sampling meth-
ods suggested in the respective papers, as they are allegedly
yielding better results.

3.3. Quantitative results

As the pre-processing steps were different, we have de-
cided to normalized our reconstructed meshes on the unit
sphere before evaluating them. As a result, the Chamfer and
the Earth’s mover distances were smaller than the one pre-
sented in [7] [9] of several order of magnitudes but get closer
to the one presented in [8].

As it is presented in the paper [9], we have decided to train
two configurations of the Poisson solver model, correspond-
ing to the levels of noise: σ = 0.005 and σ = 0.025. Be-
low are our results for the Chamfer-l2 distance and the Earth
Mover’s [12] distance using the definition and the subsam-
pling computation strategy described in [8]

Model Mode Chamfer-L2 Earth Mover’s
mean 2.53 1.03DeepSDF mediane 1.93 0.97
mean 0.760 0.865ONET mediane 0.682 0.843
mean 0.285 0.836SAP

σ = 0.005 mediane 0.192 0.825
mean 0.880 0.881SAP

σ = 0.025 mediane 0.543 0.866

Table 1: Comparisons for representing unknown sofas on the
test set. Lower is better for all metrics. Chamfer distance has
to be multiplied by 10−3

4https://github.com/marian42/mesh to sdf

2

The SDF model gives us the worst results while the Pois-
son solver model gives us the best. As expected for this
model, the less noise we have, the better the results. Concern-
ing the DeepSDF results, one explanation could be the cal-
culation of the initial signed distance function by the Python
library. After being preprocessed, some meshes do not allow
a good calculation of the signed distance function. Theoreti-
cally, the calculation of the signed distance from a point to a
surface using the scalar products with its nearest neighbours
is correct. But, in practice, it is not suitable for noisy data.
This aspect is well known from the meshtosdf library.

3.4. Qualitative results

Generally speaking, our models were quite efficient to re-
construct simple meshes with shapes enough represented in
the training dataset. The meshes are displayed using Mesh-
lab.

(a) Simple shape that can be seen as an outlier in the sofas
dataset

(b) Simple common shape of the sofas dataset

Figure 1: Well reconstructed mesh.

However, they present sometimes some difficulties to re-
construct thin elements, unusual elements such as pillows,
holes in the meshes and they tend to bulge the edges of the ob-
ject. The difficulties encountered stem from both the scarcity
of items and the uncommon shapes in the dataset. Sofas tend
to be filled, without holes, and pillows do not always appear in
the meshes. These comments apply particularly to DeepSDF
but much less to SAP.

(a) Fails to reconstruct complex shapes with holes

(b) Fails to reconstruct thin elements.

Figure 2: Failure cases.

4. Conclusion
The papers we have been working on all have the same

objective: to find an efficient way of representing 3D
topologies, that is less computationally expensive than
the traditional voxels or pointclouds representations. As
desired in the project proposal, we were able to re-train the
model on a single class of the Shapenet dataset for a signed
distance model and an occupancy model. In addition, we
tested a more recent method based on solving the Poisson
equation which provided the best results. The metrics that
we have used to compare the DeepSDF, the ONet and
the SAP models tend to show that all of them are able to
grasp geometries, with an advantage of the SAP model
with low noise on the Chamfer and Earth Mover’s distances.

One pitfall that is however important to mention
is that all of the training and testing processes were
done on synthetic data and the articles that we have
worked on mostly omitted the real life cases applications.

With more time and resources, we would have explored
IGR, a method based on solving an eikonal equation. Al-
though we tested this method on the DFaust dataset, we did
not manage to obtain convincing meshes as they showed
many artefacts.

References
[1] Peng et al. Convolutional occupancy networks. 2020.

[2] Fleuret Baque Remelli and Fua. Geodesic Convolu-
tional Shape Optimization. 2018.

[3] Angel X. Chang et al. ShapeNet: An Information-Rich
3D Model Repository. 2015. arXiv: 1512 . 03012
[cs.GR].

[4] Kaiming He et al. Deep Residual Learning for Image
Recognition. 2016. DOI: 10.1109/CVPR.2016.
90.

[5] W. E. Lorensen and H. E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm.
1987.

[6] Daniel Maturana and Sebastian Scherer. VoxNet: A
3D Convolutional Neural Network for real-time object
recognition. 2015. DOI: 10.1109/IROS.2015.
7353481.

[7] Lars Mescheder et al. Occupancy Networks: Learn-
ing 3D Reconstruction in Function Space. 2019. arXiv:
1812.03828 [cs.CV].

[8] Jeong Joon Park et al. DeepSDF: Learning Continuous
Signed Distance Functions for Shape Representation.
2019. arXiv: 1901.05103 [cs.CV].

[9] Songyou Peng et al. Shape As Points: A Differentiable
Poisson Solver. 2021.

[10] Christian Sigg. Representation and Rendering of Im-
plicit Surfaces. 2006.

3

https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.1109/IROS.2015.7353481
https://arxiv.org/abs/1812.03828
https://arxiv.org/abs/1901.05103

[11] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree
Generating Networks: Efficient Convolutional Archi-
tectures for High-resolution 3D Outputs. 2017. URL:
http://lmb.informatik.uni-freiburg.
de/Publications/2017/TDB17b.

[12] C. Tomasi Y. Rubner and L. J. Guibas. A metric for dis-
tributions with applications to image databases. 1998.

5. Annexe
5.1. Other difficult meshes

More at available at this link 5

(a) Reconstruction of the pillows

(b) Very unusual shape

(c) Complex shape with holes and thin elements.

Figure 3: More samples of interesting shapes. Respectively:
groundtruth, DeepSDF, ONET and SAP low noise.

5.2. Training

5.2.1 DeepSDF

Interestingly, the training loss falls quickly but the networks
is still optimizing the magnitude of the latent vector. It seems
that it is as important as the loss to indicate the convergence
of the algorithm. The two peaks present on the graphs are
the consequence of stopping and then resuming training. The
training was the longest one and took 10 hours on a A100
GPU.

Figure 4: Train loss during the training process for the signed
distance network

5https://drive.google.com/drive/folders/1qZ0kgDfGb0ejKAgr-
xaXHLruHJYlwFx8?usp=sharing

Figure 5: Magnitude of the latent vector code

5.2.2 Shape As Points

Below are our training loss for σ = 0.005. The network for
σ = 0.025 present a similar curve. The networks takes 1 hour
on a A100 GPU to run over 3k iterations.

Figure 6: σ = 0.005. After 6k iterations, the validation loss
display on another tensorboard is about 0.0020 whereas the
final training loss is 0.0011

For σ = 0.025, after 3k iterations, the validation loss dis-
play on another tensorboard is about 0.0044 whereas the final
training loss is 0.0024. In both case, we have a little over-
fitting, of a factor of 2.

5.2.3 Occupancy network

The occupancy network was trained on a A100 GPU for about
4 hours on the sofas extracted dataset, using a pointcloud for
the conditioning additional input fed into the PointNet en-
coder.

Figure 7: Train and validation loss during the training process
for the occupancy network

4

http://lmb.informatik.uni-freiburg.de/Publications/2017/TDB17b
http://lmb.informatik.uni-freiburg.de/Publications/2017/TDB17b

