
NPM3D final project : Deep Hough Voting for 3D Object Detection in Point Clouds

Loı̈ck Chambon
MVA - ENS Paris Saclay

loick.chambon@eleves.enpc.fr

Abstract

Automatic modeling and segmentation is a major applica-
tion in 3D computer vision. There are two classical main fam-
ilies of methods, those using surface propagation and those
using surface extraction by voting. The Hough method be-
longs to the second category. Its principle is to perform a vote
in the parameter space rather than in the point space. With
the arrival of neural networks, the voting principle has been
extended and used to predict bounding box for scene points
in the context of 3D object detection. In this project we will
study all the pipeline of a new neural network [12] whose
originality is to perform 3D bounding box estimation using
only 3D point clouds and no external 2D data.

1. Introduction

3D modeling and segmentation has many practical appli-
cations: in architecture with the construction of 3D cities or
in industry with the maintenance of power plants and facto-
ries. Typically, the input to segmentation models is a point
cloud collected by Lidar, extracted from RGB-D images, or
sampled on reconstructed meshes. Then the data is processed
by algorithms and networks.
Classical methods for 3D modeling use either propagation or
voting to extract surfaces from the point cloud. We have seen
in course the RANSAC algorithm and the Hough transform.
RANSAC is a method of voting on random samples of quo-
rum points that model the surface by a minimal number of
points, while the Hough transform exploits the duality be-
tween the points on a curve and the parameters of that curve
[6]. It has been generalized to non parametric curves in [1]
but it is not suited for 3D data and complex shapes.
Recently, deep learning methods have emerged and tackled a
related problem: 3D object detection, which has many appli-
cations in augmented reality, robotics and autonomous driv-
ing. The objective is to surround objects on scenes using
bounding boxes despite an often partial representation of the
objects. Choosing the rights bounding boxes is a difficult task
since there is a large search space, varying sizes and orienta-
tions. As a first approach, the methods have tried to extend
the 2D to 3D detection frameworks using 3D convolutions, a
bird’s eye viewpoint [2] or a reduction in search space per-
formed by a 2D detectors to guide the search [9]. Some

are well suited for real time inference and autonomous driv-
ing. However, most of them suffer from data scarcity, com-
putational cost, are limited to certain types of scenes and use
external data such as multiple RGB-D images. Even if 2D
images can bring useful information, in 3D computer vision,
they are not the most natural data to use. To capture the ge-
ometry of the scene, we often prefer to work with voxels or
point clouds. Point clouds have the advantage of representing
accurate 3D geometry and being robust to illumination, but
they imply high computational costs, they are often scarce
and noisy. The scarcity of the data is a major problem due to
the way point clouds are collected because the cheapest way
to collect point cloud is to use depth sensors that only capture
surfaces of objects, so 3D object centers are likely to be in
empty space, far away from any point.
Then, in 2019, R. Qi et al. [12] successfully used a raw point
cloud without any external information and 2D segmentation
algorithm to segment objects in complex scenes and accu-
rately predict the bounding boxes of objects. To deal with
the scarcity of the data, they have adapted the Hough voting
using features calculated via a PointNet++ backbone network
[13] that enrich points with more features.

2. Method

Deep Hough voting [12] relies on two main concepts:
the backbone neural network PointNet++ [13] used to enrich
points with external features and the Hough voting used to
select important points. This allows the network to generate
new points called the seeds that lie close to objects centers
which can be far from collected points. Then, the seeds can
be grouped and aggregated to generate box proposals.

2.1. PointNet++

The network is an improvement of PointNet [11] whose
we have seen the architecture in course and implemented dur-
ing the last TP. The idea is to approximate a general function
f : 2RN → R defined on a point set S by applying a symmet-
ric function g : RK × ...×RK → R on transformed elements
x ∈ S in the set by applying h : RN → RK .

f({x1, ..., xn}) ∼ g(h(x1), ..., h(xn))

They propose to represent h by an MLP and g by a composi-
tion of a single variable function and a max pooling function.

1

This setting is justified by an Universal Approximation The-
orem (see. Section 4.3 in [11]). In g, symmetry is important
because the points in the point clouds are not ordered and
must be treated independently of their order.
PointNet has drawbacks. It fails to recognize fine-grained
patterns, to capture local-context and needs and takes always
the same sub-sampled low number of points as input (1024
points). PointNet++ [13] leverages some drawbacks by ap-
plying PointNet recursively on a nested partitioning of the in-
put point cloud.

Figure 1: Hierarchical point set feature learning of Point-
Net++

The architecture (Fig. 1) relies on the set abstraction lay-
ers which processes the N input points to create M points
enriched with features. It is composed of three submodules:
the sampling layer, the grouping layer and the PointNet layer.
Since they are used in deep Hough voting, we will briefly de-
scribe them.

• Sampling layer: selects a set of points from input points,
which defines the centroids of local regions. For selec-
tion, it uses Farthest point sampling (FPS) because it
catches points from less dense regions and covers a bet-
ter region than random sampling 1. On Fig. 1 centroids
are the dots in grey on the green left image.

• Grouping layer: constructs local region sets by finding
“neighboring” points around the centroids. It uses Ball
Query to get a maximum of K points around each cen-
troid inside a sphere of a certain predefined radius. Ball
query is preferred to KNN because with KNN, the spar-
sity of the data can lead to match a point with a neigh-
bour locally far from it. It is represented by circles on
the second green image of Fig. 1.

• (mini) PointNet layer: encodes local region patterns into
feature vectors. It contains a shared MLP network with
a series of convolution, normalization, Relu layers fol-
lowed by a max pooling layer. Before feeding PointNet,
the coordinates of the points in the local regions are ex-
pressed in the local referential. This allows the network
to use MLP with shared parameters independently of the
global coordinates.

1https://minibatchai.com/ai/2021/08/07/FPS.html

The use of multiple set abstraction layers allows PointNet++
to work with the same input data at different scales and to
catch different levels of context. But, in set abstraction layer,
the point set is sub-sampled and we want to obtain features
for all the points. One solution is to always sample all points
as centroids in all set abstraction levels, but it is computation-
ally expensive so they have decided to add a feature propaga-
tion layer that propagates features from sub-sampled points
to the original points. In practice they have adopted a hierar-
chical propagation strategy with distance based interpolation
and across level skip connections.

2.2. Hough voting

To understand how Hough voting works, let us recall the
2D pipeline of Hough voting (Fig. 2), the second important
principle of the network. It is composed of an online step and
an offline step. In the offline step, we learn a codebook that
stores the correspondence between image patches and their
offset from the centers of the corresponding objects. In the
online step, given a 2D image, we perform a selection of
points of interest using, for example, the Harris corner de-
tector, SIFT, ORB or SURF. Then we match the patch around
the points of interest to a training patch in the codebook. Af-
ter that, each match tells us the offset of the point to reach
the center of the object, so we translate our point to produce
a vote. Finally, we apply clustering to find the dense regions
and find the patches that voted for the dense regions by back-
projection before drawing bounding boxes using the coordi-
nates of the selected patches.

Figure 2: Illustration of Hough voting. Yellow cross repre-
sent interest points. Red circles represent the remaining votes
after clustering on objects center. Squares are the patches that
voted for the dense regions. Dots represent the object bound-
ing box proposal. (Credits from U.Toronte, CSC420, 2015,
slides 57/91.)

Hough voting relies only on interest points and can aggre-
gate points from long range into a virtual center. That is why
it is well suited for sparse data such as point clouds. But, this
formulation is non differentiable. Thus, it can not be opti-
mized using a neural network.

2.3. Deep Hough voting

The 3D pipeline (Fig. 3) is really close to the one pre-
sented before. To make it differentiable, they did some ad-

2

https://minibatchai.com/ai/2021/08/07/FPS.html

justments: interest points relies on a neural network instead
of handcrafted features, the codebook is replaced by a Vot-
ing module, the cluster selection is realized using a sampling
strategy and a module with trainable parameters, and bound-
ing boxes are generated directly from the votes features with-
out back-tracing the votes.

2.3.1 Model

VoteNet takes as input a collection of scenes represented by
a raw point cloud of size (B,N, 3) composed of xyz coordi-
nates xi ∈ R3. Where, B is the batch size, N is the number of
points in a batch and 3 corresponds to the number of coordi-
nates. Each scene is augmented on the fly using data augmen-
tation such as random point selection, flipping and rotation.
They have also add optional extras features such as: a height
feature corresponding to the distance to the floor z − zfloor,
estimated as the 1% percentile of all points’ heights, and RGB
color features. For clarity of the explanation, we do not use
them afterwards. Then, after pre-processing, the data is pro-
cessed by three networks (see steps Fig. 3).

• Backbone network: takes as input the batch of points
(B,N, 3) and outputs a batch of M sub-sampled points
(e.g 1024) enriched with C (e.g 256) features fi leading
to a batch of size (B,M, 3+C). The enriched points are
called the seeds. The architecture relies on PoinNet++
to create features. It is composed of four set abstraction
layers and two feature propagation layers. Each set ab-
straction layers has a receptive field parametrized by a
ball-region radius. The deeper we are, the higher is the
radius.

• Voting module: processes existing points to generate
votes. It is a MLP with ReLU and batch-normalization
taking as input the seeds: si = [xi; fi], (B,M, 3 + C)
and that outputs a space and a feature offset ∆si =
[∆xi; ∆fi], (B,M · V, 3 + C) where V is the number
of votes per seed, such that the vote can be written as:
vi = si + ∆si. In the appendix of the paper, they have
showed that V = 1 leads to the best results. After being
added to the seeds, the offsets allow to obtain the coor-
dinates and the features of the votes. Then, it takes as
inputs, the M · V vote proposals of the previous module
and samples K votes using farthest point sampling strat-
egy on coordinates (without using features). They are the
K cluster centroids. After that, it assigns the neighbour-
ing votes of each centroid to the corresponding cluster,
resulting in K clusters.

• Proposal module: aggregates the feature votes and pro-
duces a bounding box proposal. The architecture is a set
of abstraction layer followed by another MLP after the
max-pooling in each local region. In details, after the
voting module, the networks returns clusters that con-
tains a center point wj = [xj , fj] and neighbours (wi)i.
They begin to represent neighbours in the local referen-
tial: x

′

i = (xi − xj)/r where r is a radius. Then, they

use an extremum selection calculate via a (mini) Point-
Net module:

MLP2

(
max

i=1,...,n
{MLP1([x

′

i, fi])}
)

At the end of the module, the network outputs a mul-
tidimensional vector containing 3D oriented bounding
box parameters (center, heading and scale), object-
ness scores and semantic scores. The output has
(5 + 2NH + 4NS + NC) channels, where NH is the
number of heading bins, NS the number of box anchors
and NC the number of semantic classification (see box
loss for more details about NH and NS). 5 corresponds
to 2 objectness scores and 3 center regression values,
2 NH corresponds to one classification score and one
regression offset (only the azimuth is considered) and
4 NS corresponds to one classification score and three
regression offsets.

During inference, a non maximum suppression module is
used with an IoU threshold of 0.25 or 0.50 to filter box pro-
posals.

Figure 3: Evolution of the data through the Deep Hough Vot-
ing pipeline: raw data, after backbone network, after voting
network, after vote clustering strategy and after the proposal
module.

2.3.2 Loss

VoteNet is trained end-to-end with a multi-task complex loss
composed of four terms.

Lvotenet = Lvote + λ1.Lobj−cls + λ2.Lbox

+ λ3.Lsem−cls

In the paper the authors took λ1 = 0.5, λ2 = 1, λ3 = 0.1.
If we want to be more precise on the bounding box or the
classification loss, we can change the weights.

• Lvote is the vote loss that compared predicted votes to
ground-truth votes. Intuitively, if a seed point si =
[xi; fi] belongs to an object, it has to vote for the ob-
ject center xi + ∆x∗

i , where the delta term is the offset
from the seed to the center of the object. Hence, this loss

3

incites the network to predict votes that are close to the
object centers.

Lvote =
1

Mpos

∑
i

||∆xi −∆x∗
i ||1[si ∈ Mo]

Where Mo is the count of total number of seeds on object
surface and 1[si ∈ Mo] indicates if the seed belongs to
the object or not.

• Lobj−cls is the objectness loss defined as a supervised
weighted binary cross-entropy loss. The aim is to tell
whether the predicted centers correspond to real object
centers or not and to filter outliers. In practice, it incites
the network to give high positive objectness scores when
the predicted center is near a ground truth center and to
assign false objectness scores when the predicted center
is far from any real object center. It has three different
behaviours (0 < d0 < d1) depending on the distance
from the votes to the predicted center.

– If the predicted center has a distance lower than d0,
then the label is positive.

– If the distance is between d0 and d1, then the pre-
diction is ignored.

– Otherwise, the predicted center is far from any real
object center and the corresponding label is nega-
tive.

In their implementation, they have chosen d0 = 0.3,
d1 = 0.6, w0 = 0.8, w1 = 0.2.

• Lbox is the 3D bounding box estimation loss. According
to [8] 3D bounding box are parametrized by their cen-
ters, their size and their orientation (due to the nature of
our data, the azimuth is sufficient to represent the angle).
Thus, the loss is composed of center regression, heading
estimation and size estimation sub-losses as in [9]. Note
that it is only applied on the positive proposals (< d0)
of the objectness loss.

Lbox = Lcenter−reg + 0.1 · Langle−cls + Langle−reg

+ 0.1 · Lsize−cls + Lsize−reg

– Lcenter−reg is the Chamfer distance between cen-
ters proposals and ground truth centers.

– Langle is a hybrid classification (cross-entropy)
and regression (Huber losses) losses. To do this,
they discretize the orientation of the 3D space into
heading bins and want the predicted angle to be-
long to the same bins as the actual angle. The resid-
ual rotation is simply the correction that needs to be
applied to the orientation of the center ray of that
bin in order to obtain the output angle.

– Lsize is similar to the angle loss but aims to find
the right size of the bounding box. The number
of scaling bins is set to be the number of object
classes.

• Lsem−cls is the semantic classification loss which is a
cross-entropy loss over all the classes using only the pos-
itive proposals. It aims at classifying the objects between
all the different classes NC.

3. Experiments

3.1. Datasets

For our experimentations we have used SUN RGB-D
[14] and ScanNet [4]. SUN RGB-D is an amodal dataset
containing 10k real RGB-D images of room scenes with
dense 2D and 3D annotations for both objects and rooms.
The dataset is captured by 4 different RGB-D sensors.
For our experiments, we have only used the two different
versions of Kinect, namely v1 and v2. Each RGB image
has a corresponding depth and segmentation map (Fig. ??).
The original dataset contains 47 scene categories and about
800 object categories while the version of the dataset used
in Deep Hough voting contains only the 10 most common
objects categories (NC = 10). The classes are unbalanced
and chairs and tables are the most represented categories.
The training and test sets contain both 5k images with 20k
extracted points per image.
About the hyper-parameters, the authors have chosen:
NH = 12 and NS = NC = 10.

(a) RGB image. (b) Depth image. (c) Point cloud.

Figure 4: Input of SUN RGB-D

ScanNet is a richly annotated dataset of 3D reconstructed
meshes of indoor scenes. It contains 1.5k training examples
collected from hundreds of different rooms, and annotated
with semantic and instance segmentation for 18 object
categories (NC = 18). The dataset is not amodal and
has no pose information. Point clouds are extracted on the
reconstructed meshes and each contains 40k points (Fig.
6). ScanNet is divided into three splits: a training split,
a validation split and a testing split, but we only have the
ground truth for training and validation.
About the hyper-parameters for ScanNet the authors have
chosen NH = 1 2, NS = NC = 18. Since ScanNet does
not provide oriented bounding box annotations, the network
aims to predict axis aligned bounding boxes. That explains
why there is only one heading bins. The number of maximum
object per scenes is set to 64, that is far more than the most
charged scene.

2It is written 12 in the paper and set to 1 in the code.

4

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP

VoteNet
36.27 87.92 88.71 89.62 58.77 47.32 38.10 44.62 7.83 56.13 71.69 47.23 45.37 57.13 94.94 54.70 92.11 37.20 58.65
8.07 76.06 67.23 68.82 42.36 15.34 6.43 28.00 1.25 9.52 37.52 11.55 27.80 9.96 86.53 16.76 78.87 11.69 33.54

Our
32.51 87.62 87.16 88.94 58.12 44.88 36.55 48.78 43.83 57.94 63.69 41.23 44.15 66.52 95.15 50.59 89.06 37.44 57.49
5.58 71.73 60.90 63.39 35.49 13.36 8.26 27.30 0.15 21.29 30.83 11.11 29.29 19.12 86.04 29.44 75.42 8.75 33.20

Table 1: 3D object detection scores per category on the ScanNetV2 dataset, evaluated with mAP@0.25 IoU (1st line) and
mAP@0.50 (2nd line). VoteNet represents the paper results and ”our” represents our results.

For both datasets, each class has a different mean size that
is used to calculate the size residual during the bounding box
loss.

(a) RGB scan of a room. (b) Semantic segmentation.

Figure 5: Input of Scannet

3.2. Metric

The metric used is the mean average Precision (mAP) with
a 3D Intersection over Union (IoU) threshold. They have cho-
sen 0.25% and 0.5% as thresholds.

3.3. Training details

The original training uses an Adam optimizer with a learn-
ing rate of 0.001 that is divided by 10 after 80 epochs, 120
epochs and 160 epochs. According to the authors, the learn-
ing rate scheduling has boosted the performance on ScanNet
compared with the first version of the paper. Originally they
had exponential decay of the learning rate for paper version-
1. Later they updated it to a step-wise learning rate de-
cay. They have also used a schedule for the batch momen-
tum. It goes from 0.5 to 0.999 with the following formula:
momentum = 1−max(0.001, 0.5P+1) where P increases by
1 every 20 epochs and stars from 0.
Unlike the authors, we have used a P100 provided by Colab
Pro and we have trained our models for 200 epochs on Scan-
netv2 (3 hours) and 140 epochs for SUN RGB-D v1 and v2
(14 hours each).

3.4. Implementation

The original code relies 3 on PyTorch 1.1.0 and Tensorflow
1.14.0. For compatibility reasons with the C++ code of Point-
Net++, we have not changed the versions (see error 4).
We have re-written several part of the codes to make it more
readable, leading to six main folders. Our final implementa-
tion has the following folders. Losses contains one file per

3https://github.com/facebookresearch/votenet/
4UserWarning: Attempted to use ninja as the BuildExtension backend but

we could not find ninja.

main loss. Models contains the backbone, the voting and
the proposal module. PointNet2 contains the implementation
of PointNet++. ScanNet and Sunrgbd contains the code for
the pre-processing and the creation of the training folder as-
sociated with the ScanNet or the Sun RGB-D dataset. Fi-
nally, utils contains distance functions, metrics and other use-
ful functions.

3.5. Results

We have obtained similar results for Scannet in around 3
hours. Results are better for the ”counter” class. Otherwise,
they are slightly worse (Tab. 1). The difference is due to the
randomness in optimisation. Visually, we note three things.
The first one is that it has a better localization of objects than
a classification. The second one is that it predicts bounding
boxes for un-annotated points (cf. black dots on 6). The net-
work therefore predicts in undetermined areas, which can dis-
tort the results since these predictions penalize the optimiza-
tion. The third one is that it tends to predict more bounding
box than there are objects and often leads to larger bounding
box than the one annotated (cf. left red door on the 2nd image
8). It also does not hesitate to increase the size of the bound-
ing box in the ground. Moreover, the network confuses rela-
tively close classes leading to relatively non-penalizing error.

(a) Ground-truth. (b) Predictions.

Figure 6: Output of VoteNet on Scannet with an objectness
threshold of 0.5 after non-maximum suppression.

About SunRGBD, we have decided to train and evaluate
our model on both the v1 and the v2 of the dataset in order
to have updated bounding boxes (Tab. 2). The training lasts
for 14 hours until the 140th epoch using the default parame-

5

https://github.com/facebookresearch/votenet/

Model Metric bed table sofa chair toilet desk dresser night-stand bookshelf bathtub Average
Votenet (v1) mAP@0.25 83.0 47.3 64.0 75.3 90.1 22.0 29.8 62.2 28.2 74.4 57.7

Our (v2)
mAP@0.25 84.52 49.10 65.90 76.76 90.07 24.50 27.69 61.11 31.43 77.43 58.86
mAP@0.50 46.65 15.17 38.82 53.39 59.88 39.44 14.00 36.49 6.80 33.71 30.88

Our (v1)
mAP@0.25 83.37 47.97 62.75 74.21 88.50 21.51 20.96 60.82 31.19 79.07 57.03
mAP@0.50 49.79 14.14 39.02 50.00 57.49 39.76 9.77 25.91 4.87 34.04 28.90

Table 2: 3D object detection scores per category on the SUN RGB-D v2 dataset compared to the results of the article obtained
on SUN RGB-D v1.

ters. As the data is more sparse, it appears that the network
tends to have implicitly learned the presence of objects rel-
ative to another. With blue representing beds, we notice that
the network predicts a nightstand twice without it actually be-
ing present (Fig. 2, 9).

(a) Ground-truth. (b) Predictions.

Figure 7: Output of VoteNet on SUN RGB-D v2 and v1 with
an objectness threshold of 0.5 after non-maximum suppres-
sion.

4. Improvements

4.1. Pre-training

Votenet leads to impressive results, but it presents some de-
faults that deserve reflections. To begin with, we can criticise
the data that is used for evaluation. As we have noticed, black
points represent un-annotated points. They have no ground
truth, so when the network predicts a bounding box around
them, it automatically increases the loss. Even if this point
is not directly linked to the network it is always important to
keep in mind.
With the point cloud, one way to improve the network is to
use additional features as input. We have xyz coordinates and
the network has an option to use rgb colors. Also, in the SUN
RGB-D dataset, there is a pose estimate, so we can add a
ground distance as an additional feature. Moreover, RGB-D
images allows to use depth as a feature and some point clouds
provide laser intensity. In some situations, other hand-created
features can be useful. We have seen in class other features:
verticality, flatness, linearity and sphericity which are based
on the eigenvalues of the covariance matrix.

Another point of improvement, this time less specific to a
dataset, is data-augmentation. During training, the data are
augmented using two different techniques: flipping and rota-
tion. To improve the data-augmentation we can include point
sampling, cropping, adding noise, isotrocpic scaling, random
dropout or chromatic jittering. Sampling, noise dropout and
cropping are of particular interest as we provide a bounding
box for partial objects, while jitter is useful to account for
object color diversity.

4.2. Architecture

Regarding the architecture, improvements have been
made since the release of VoteNet. Even if the trend is not to
modify the backbone network, we can change the backbone
PointNet++ network that creates features using for instance
a convolutional approach such as a KPConv layer [15] that
leads to promising results on semantic segmentation and
classification.
We can also try to change the core architecture. One way
is to add additional inputs. The authors of Deep Hough
Voting, Qi et al. [10] proposed an ImVoteNet detector that
uses 2D RGB information. Compared to prior work on
multi-modal detection, they explicitly extract both geometric
and semantic features from the 2D images. They leverage the
camera parameters to lift these features to 3D. To improve
the synergy of 2D-3D feature fusion, they also propose a
multi-tower training scheme and obtained 63.4 mAP@0.25
on the SUN RGB-D dataset.
But, to improve VoteNet it is more coherent to look at
networks that use only 3D geometrical point cloud infor-
mation. To better capture the fine local structural features
surrounding the potential objects from the raw point clouds,
BRNET [3] generatively back-traces the representative points
from the vote centers and rethinks seed points around these
generated points. Also, Liu et al. [7] introduces the usage of
Transformers in GroupFree3D that modified the part between
object candidates and bounding box estimation. Instead of
grouping local points to each object candidate, they compute
the feature of an object from all the points in the point
cloud with the help of an attention mechanism, where the
contribution of each point is automatically learned in the
network training. Results are among the best obtained on
the SUN RGB-D segmentation benchmark (Tab. 3). We can
see that the mAP@0.50 is largely improved with the recent
architecture. Considering the results, VoteNet seems good to
predict the objectness but has some difficulties to precisely
localise objects.

6

Model VoteNet BRNET GroupFree3D ImVoteNet
Year 2019 2021 2021 2020

Only Geo.Info Yes Yes Yes No
mAP@ 0.25/0.50 59.1 / 35.8 61.1 / 43.7 63.0 / 45.2 63.4 / -

Table 3: Networks that beat VoteNet on the SUN RGB-D seg-
mentation benchmark.

Concerning the predictions, one drawback is the unstabil-
ity of the virtual center point for a partially occluded object.
To overcome this issue, Feng et al. [5] added an auxiliary
branch of direction vectors to improve the prediction accuracy
of virtual center points and 3D candidate boxes. In addition, a
3D object-object relationship graph between proposals is built
to emphasize useful features for accurate object detection.

5. Conclusion
Deep Hough Voting is an interesting paper that uses only

geometric information to predict the bounding box of several
objects in a point cloud. It leads to promising results and re-
thinks the traditional Hough voting method in a modern way.
The pipeline is simply understandable but it is composed of
complex modules that takes me time to understand. The net-
work is trained relatively fast even using a colab GPU and the
results are good and reproducible. Its ability to predict objects
with scattered point clouds impressed me as its predictions
were close to reality. Nonetheless, the network does not al-
ways have an accurate estimate of the center of the bounding
box and predicts objects outside the map.
These drawbacks invite us to test more recent approaches in
the same vein as the paper. With more time, I could have tried
to implement an improvement, although in this case it might
be more interesting to work on a complementary article with
a more recent approach.

References
[1] Danna H Ballard. Generalizing the hough transform to

detect arbitrary shapes. 1981.

[2] Xiaozhi Chen and Huimin Ma. Multi-View 3D Ob-
ject Detection Network for Autonomous Driving. 2019.
arXiv: 1611.07759.

[3] Bowen Cheng et al. “Back-tracing Representative
Points for Voting-based 3D Object Detection in Point
Clouds”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021.

[4] Angela Dai et al. “ScanNet: Richly-annotated 3D Re-
constructions of Indoor Scenes”. In: Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE. 2017.

[5] Mingtao Feng et al. “Relation Graph Network for 3D
Object Detection in Point Clouds”. In: 2019.

[6] Paul VC Hough. Machine analysis of bubble chamber
pictures. 1959.

[7] Ze Liu et al. “Group-Free 3D Object Detection via
Transformers”. In: arXiv preprint arXiv:2104.00678
(2021).

[8] A Mousavian, D. Anguelov, and J. Flynn. 3D Bound-
ing Box Estimation Using Deep Learning and Geome-
try. 2017.

[9] Charles R Qi et al. Frustum pointnets for 3d object de-
tection from rgbd data. 2018.

[10] Charles R Qi et al. “Imvotenet: Boosting 3d object de-
tection in point clouds with image votes”. In: IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2020.

[11] Charles R Qi et al. PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation. 2016.

[12] Charles R. Qi, Or Litany, and Kaiming He. Deep
Hough Voting for 3D Object Detection in Point Clouds.
2019. arXiv: 1904.09664.

[13] Charles R. Qi et al. PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space.
2017.

[14] S. Song, S. Lichtenberg, and J. Xiao. SUN RGB-D: A
RGB-D Scene Understanding Benchmark Suite. 2015.

[15] Hugues Thomas et al. “KPConv: Flexible and De-
formable Convolution for Point Clouds”. In: (2019).
URL: http://arxiv.org/abs/1904.08889.

6. Gallery
You can find on the next pages more outputs obtained dur-

ing testing of our networks.

7

https://arxiv.org/abs/1611.07759
https://arxiv.org/abs/1904.09664
http://arxiv.org/abs/1904.08889

Figure 8: Point cloud, ground-truth and prediction on some scans of the 3rd testing batch of ScannetV2.

8

Figure 9: Point cloud, ground-truth and prediction on some scans of the 10th testing batch of Sun RGB-D v2.

9

